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THE MASSES AND PULSATIONS OF BL HERCULIS VARIABLES
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University of California, Los Alamos, NM 87545

D. S. King

Department of Physics & Astronomy
The University of New Mexico
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1. INTRODUCTION

The BL Herculis vari-“les are primarily Population Il stars found
in galactic halo globular clusters, dwarf spheroidal galaxies, and the
small Magelianic cloud. This class of variables pulsate:s in the radial
fundamental mode at periods btetween 1 and 3 days with a few as long as
8 days. Their evolution places “hem on the above horizontal branch
(AHB) or asymptotic giant branch (AGB) between the RR Lyrae and the W
Virginis variables. There central He is exhausted and energy is sup-
plied by both He and H burning shells (Gingold, 1976).

BL Herculis stars are of particular interest because they fre-
quently exhibit light curve bumps on their rising or falling branch
similar to those scen in the more massive, metel rircher classical
Cepheids. These bumps, 8bserved to switch from descending to ascending
light between 1.5 and 1.7, can be interpireted by the Simon and Schmidt
(1976) hypothesis as a near resonance of the second overtone ([1,) and
the fundamental (N.) pulsation mcdes when the linear thecory ﬂzlﬁ ~ 0.5
%+ 0.03. Based on nonlinear calculations for Cepheids by Stoble ?1969a,b),
this hypothesis predicts bumps before maximum light for ﬂ2/n0 < 0.5,
and after maximum light for ﬂ2/ﬂ0 > 0.50.

A linear nonadiabatic pulsation study by King, Cox, and Hodson
(KCH)(1981) for 0.55 and 0.75 M, , King la composition (X =07, ¢ =
0.001), is given on the Hertzsprung-Russell diagram shown in Figurc 1.
The dashed lines of constant [l /ﬂ0 show that in order for /ﬂo = 0.5
line to be near the observed bamp phase transition period of 1.7, the
masses of BL Her variables must be less than 0.55 M,. At masses
greateg than 0.55 M. lines of constant N /n0 shift Qo periods longer
than 1.7. Also, be?ause the line of conStant N./N, = 0.5 at 0.55 M.is
not a line of congtang period, we would expect zo 90- a much larger
period range Qf 167-3.0 for this bump phase transitica than the observ-
ed range of 1.5-1.7.
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II. NONLINEAR RESULTS

Theoretical light and ve'-~city curves for 23 full amplitude, one
space dimension models were constructed with the Population II compo-
sition King la as described by Hodson, Cox, and King (1982). These
models are given by capital letters A through Z in Figure 2 together
with the linear theory results for 0.55 M, given in Figure 1. The
alphabetic order indicates increasing length of the nonlinear ”0' and
is preserved in subsequent figures.

Figure 3 gives the theoretical radial velocity over four funda-
mental mode periods for model F for each of the 50 Lagrangian mass zones
in the star, with the scale progressively ampiified for deeper layers.
Figure 4 shows the bump phase versus nonlinear fundamental mode period
obtained by measuring the phase before or after maximum light that the
bump occurs on plots of light and velocity as shown in Figyre 3. This
nonlinear result gives the light curve bump transition ~ 1.8 in good
agreement with observation.

111. THE FOUXIER DECOMPOSITION

We obtained a better measu:e of the resonance phenomenon by con-
sidering the general shape of the surface theoretical light and velocity
curves. Fourier decomposition into a principal frequency and n-]
harmonics given by

n

Mool Vrad = A ’iil A cos(xwt-@i) (1)
was done similar to the study of Simon and iee (1979). For the classi-
cal Cepheids, Simon and Lee (1979), and Simon, Lee, and Teays (1980),
found sharp shanges in ¢2 = 02-2¢1 and A : A /A2 vs the ohserved
period at 10°. This [erlzd is"also the bamp ph;se transition period
for these stars. For the BL Her stars, we plot @, ., vs. [, in Figuie 5
fﬂ;‘the rudial velocity. The resonance exhihits ffself as a sharp
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rinimum at 1?7, whereas for the light curve ¢ 1 (Figure 6), we get a
maximum at the resonance. The ¢ 1 and N corgelation for light is not
as good as for velocity, possibl% because the lumiposity may not always
be well defined at every point in the cycle.

In Figure 7 the same ¢2 is plotted against the linear N /ﬂo.
The resonance centers arsund hz/no = 0.52, not 0.50 as expecte% from
the resonance hypothesis. How€ver, a linear nz/n = 0.55 isdconsistent
if the Luwp phase transition occurs at periods”between 1:5-1.7 (see
Figuie 2). 1If the nonlinear N /ﬂo, obtained from the periodic full
amplitude solution, is used, t%en the resonance centers at 0.50 < 1,/
< 0.51 also shown in Figure 7. This is in closer agreement with thé
resonance hypothesis. This shift in the resonance occurs because the
nonlinear M /ﬂ0 is smaller, by as much as 0.012, than the linear counter-
part for raéios from 0.49-0.52. In addition, the pulsationally stable

., becomes substsntially less stable in the full amplitude solution

as the nonlinear M,/Nl, = 0.50 is approached, as Simon (1977) suggested
when a natural oscillator frequency (fl,) becomes a forced oscillator
driven by a harmonic (first harmonic) of no.
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Another significant effect at the resonance cen:ar is a sharp in-
crease in the amplitude ratio A,/A, for thne light at 1.7 as shown in
Figure 8. This increase is apparent up to the A8/A ratio and in the
tot>: light amplitude, indicating that the light cu}vcs hecome more
skcwed at higher amplitudes. For ihe radial velocity, AZ/A1 decreases
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at 1.7 as given in Figure 9. There is no significant correlation for
higher ratios, however.
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IV. CONCLUSIONS

From linear results, the masses of BL Her variables must be
nearer to 0.55 M_ than 0.75 M, if the bump phase tramsition (aesoaance)
is to be located anywhere near the observed period range of 1.5-1.7.
The nonlinear results are consisitent with the Simon resonaace concept,
but demonstrate that light and velocity curve shapes are a uonlinear
phenomenon that require nonlinear period ratioa toddisplay the reso-
nances only in the narrow, observed range of 1.5-1.7. The mass near
0.55 M. is in good agrcement with evolution calculations (Sweigart and
Gross, 1976) and nonlinear pulsation studies of Carson, Stothers, and
Vemury (1981) an2? Stothers (1981). Our recent efforts to Fourier
analyze BL Her star observational data collected by Petersen have been
uisuccessful due to poor phase coverage of available data.
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